Rock the Science of 3D! Corning Life Sciences Exhibitor Tutorial

Thomas Villani, Ph.D.

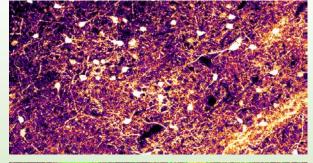
Chief Science Officer and Co-Founder Visikol Inc.

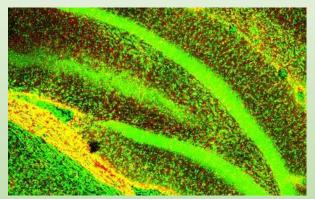
Ann E. Rossi, Ph.D.

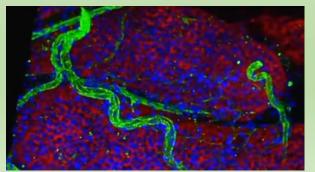
Applications Lab Manager Corning Life Sciences

SLAS | February 2018

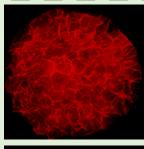
Corning Life Sciences: An Innovator in Laboratory Products for Discovery Research



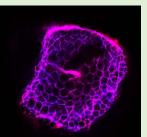




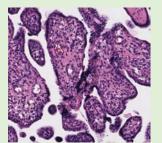
- **Business Overview:**
 - Market leader for over 100 years
 - Significant R&D investment for continuous innovation
 - Global manufacturing and distribution
 - Sales representatives worldwide including Technology and Field Applications **Specialists**
- Laboratory Products and Solutions for:
 - Cell Culture and Bioprocess
 - **Drug Discovery**
 - ADME/Tox
 - Genomics
 - Chemistry
 - Microbiology
 - **General Laboratory Products**



3D Image-Based Characterization of 3D Cell Culture Models Generated Using Spheroid Microplates


Tom Villani, PhD
Chief Science Officer
Visikol Inc.

Who is Visikol?


In Vitro Screening

- 3D Models
- High content confocal imaging
- Drug discovery assays

Whole Mount Analysis

- Vasculature mapping
- Whole brain imaging
- Whole mount IF, FP, ISH

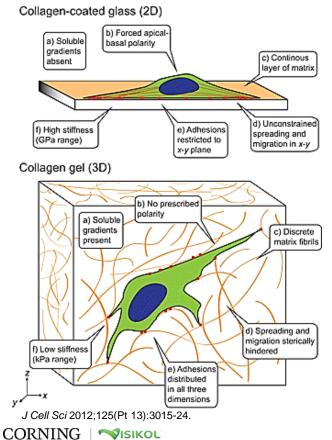
Digital Pathology

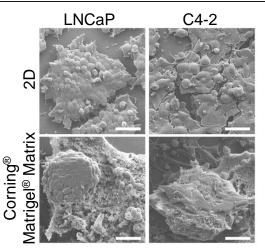
- Slide scanning
- Quantitative analysis
- Feature extraction

- Biotechnology company that spun out of Rutgers University in 2016.
- Contract research organization focused on quantitative and 3D tissue imaging.
- Sells suite of patented Visikol[®]
 HISTO™ reagents for use in
 research.

Tutorial Outline

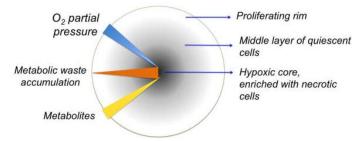
Introduction to 3D Cell Culture


Corning® Ultra Low Attachment Spheroid Microplates


Background on Tissue Clearing

Limitations of High Content Screening

HepG2 Spheroid Application


Cells in 3D Culture More Closely Mimic *In Vivo* Physiology

Adv Healthc Mater 2012;1(5): 590-99.

Cell Morphology Structural Complexity Phenotype

Pharmacol Ther 2016;163:94-108.

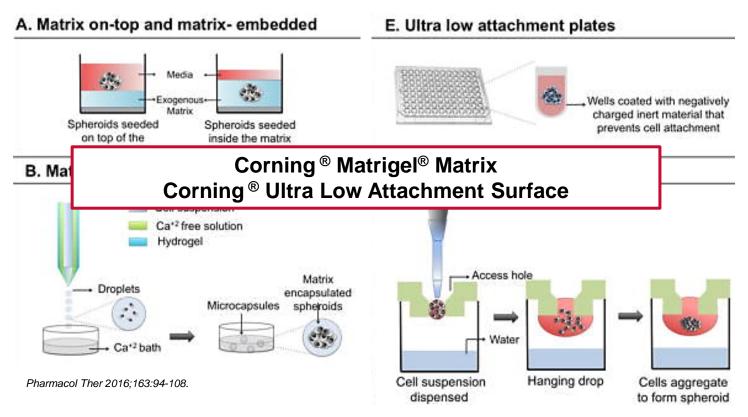
© 2018 Corning Incorporated

Spheroids, Microtissues, and Organoids

3D Cell Cultures

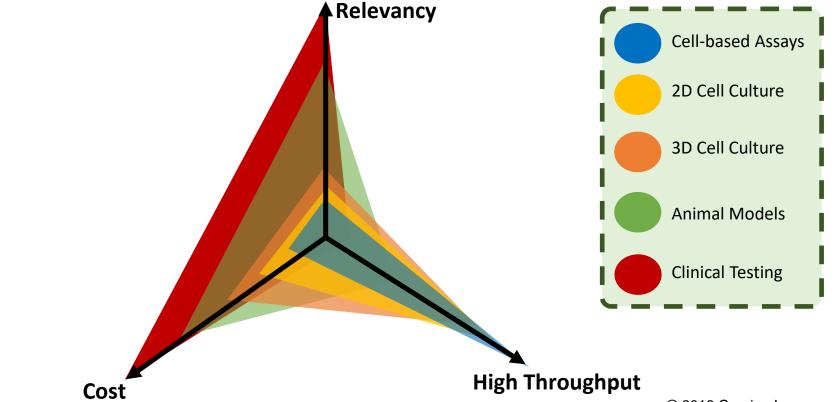
Spheroids

 Broad term for 3D agglomerations of cells, typically one or two cell types


Microtissues

• 3D cell cultures with multiple cell types designed to mimic the functionality of *in vivo* tissues

Organoids

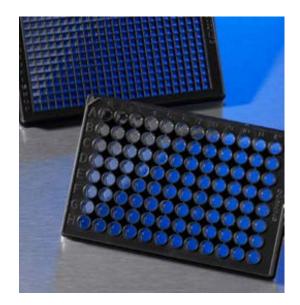

 Highly complex organizations of cells designed to function similarly to in vivo organs

Common Techniques for Generating 3D Cultures

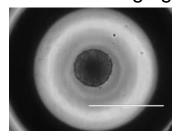
3D Cell Culture: Not a One-Size-Fits-All Solution

CORNING | SISIKOL

Realizing the Benefits of 3D Cell Culture can be Challenging

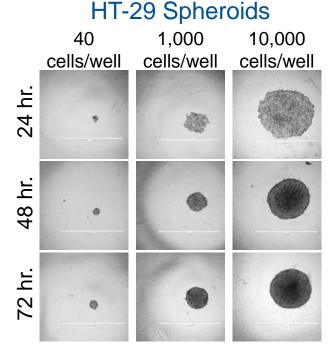

3D Strengths	3D Weaknesses			
More physiological than 2D	Culture conditions			
Cell morphology	 Variability, non-reproducible conditions with 			
Cell phenotype	biological matrices			
 More predictive of in vivo efficacy/toxicity 	 Hanging drop not amenable to high 			
Lletere geneve cell penulations	throughput without automation			
Heterogenous cell populations	Culture and maintaining uniform size			
Customizable environment	 Transfer necessary for assay, depending upon method 			
Growing body of work on 3D models,	'			
especially in oncology and toxicology	Assay methods/parameters not as well			
	developed as 2D			
Reagents specific for 3D	Imaging can be limited by 3D nature of samples			
	Scalability			

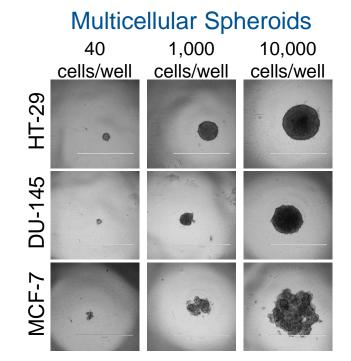
Corning[®] Spheroid Microplates


Corning Ultra-Low Attachment surface and unique round well-bottom design enable the formation and growth of a single, uniform spheroid per well with reproducible size.

Standard ANSI/SBS footprint dimensions for 96- and 384-well formats

Black sidewalls to reduce cross-talk and background noise in fluorescent- and luminescent-based assays

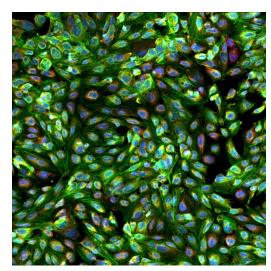




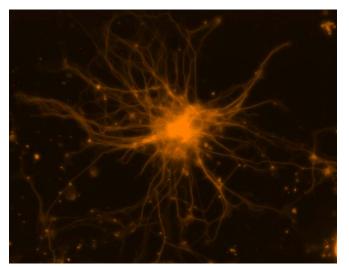
Corning Spheroid Microplate User Guide: Corning document CLS-AN-235

Reproducible and Routine Culture of Uniform Spheroids in Corning Spheroid Microplates

• Timing, seeding conditions dependent upon cell type, spheroid size

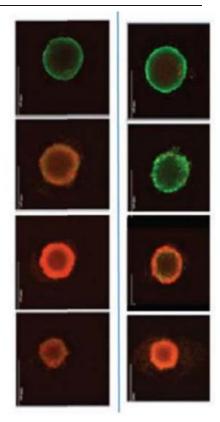

Scale bar = 1 mm

Traditional Methods for Interrogation


	Cost Per Well	Throughput	Limitations
Dissolution Assays	\$	High	Loss of spatial information
Chemical Analysis	\$	High	No spatial or cellular information
Widefield Imaging	\$\$	High	Only characterizes periphery of models
Histopathology	\$\$\$	Low	Tedious and low throughput
Confocal Microscopy	\$\$\$	Medium	Imaging depth limited to a few cell layers

High Content Screening (HCS)

- Phenotypic screening conducted on cells in well-plate format
- State of art has been to acquire single colorimetric readings, images or confocal z-stacks

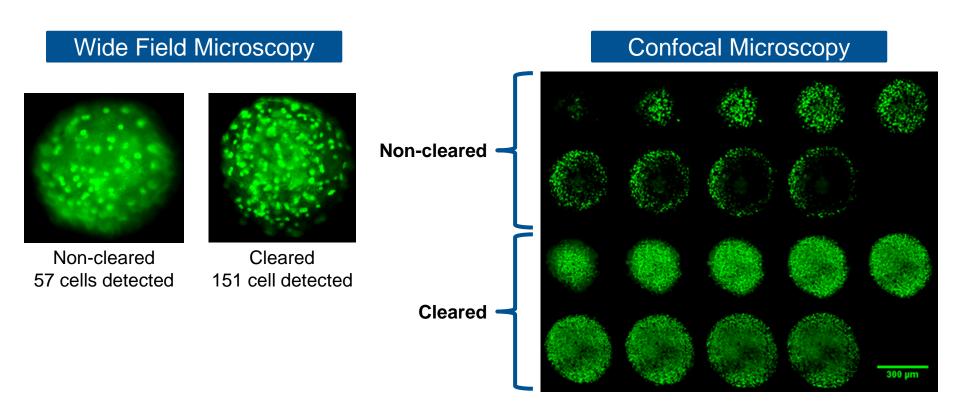

U2OS actin, tubulin at 40X

Stitched image of neuron at 20X

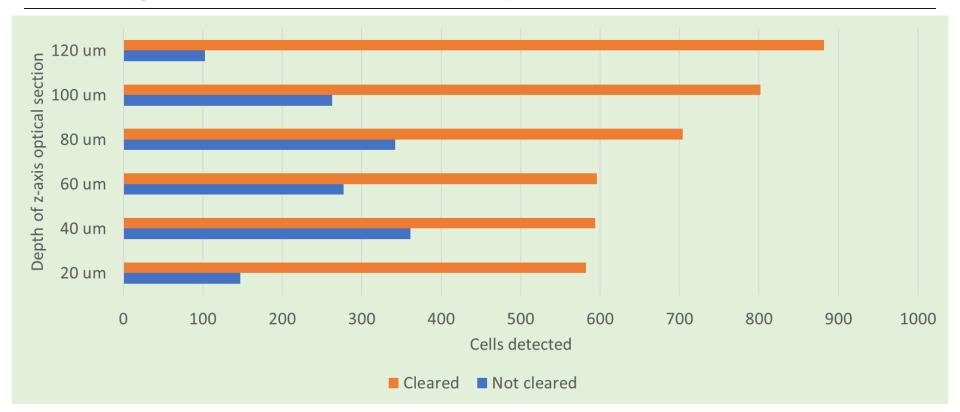
Limitations in Imaging 3D Cell Cultures

- Opacity of 3D cell-cultures causes light scattering which limits imaging to ~50 µm deep, i.e. first 2-3 layers of cells
- Causes "eclipse" images common in microtissue confocal images
- Imaging bias: Majority of cells surveyed are the outer layer –
 most proliferative, most exposed to drug, oxygen, nutrients
- Histological sectioning of microtissues is cumbersome, not high throughput
- Many imaging endpoints currently assay total microtissue, unable to differentiate between cell populations
 - Diameter, total fluorescence, ATP-luminescence assays
- Myth: microtissue centers cannot be imaged because labels cannot penetrate to center

Tissue Clearing


 Numerous methods for clearing tissues have been developed over the last several years

Type of Technique	Technique	Refractive Index	Processing time for spheroids	Immuno- labeling Compatibility	Fluorescent Protein Compatibility	Tissue Integrity	Compatibility with well-plates	Clearing is reversible
Protein Hyper- hydration	Scale	1.38	Days	NO	YES	Expansion, very fragile	YES	NO
	ClearT2	1.44	Hours	YES	YES	Fragile	YES	NO
	CUBIC	1.38 - 1.48	Hours	YES	YES	Expansion, very fragile	YES	NO
Solvent Based	BABB	1.55	Minutes	YES	NO	Shrinkage	NO	NO
	i/3DISCO	1.56	Minutes	YES	NO	Shrinkage	NO	NO
	Visikol [®] HISTO- M™	1.51	Minutes	YES	YES	No change	YES	YES
Aqueous RI Matching	FocusClear™	1.47	Hours	YES	YES	No change	NO	NO
	SeeDB/FRUIT	1.48	Hours	NO	YES	No change	YES	NO
Hydrogel	PACT/PARS	1.38 - 1.48	Hours/Days	YES	YES	Expansion	NO	NO
Embedding	CLARITY	1.45	Hours/Days	YES	YES	Expansion	NO	NO


Limitations of Known Clearing Techniques

- CLARITY + Hydrogel embedding techniques
 - Slow: requires days to weeks to clear even small tissues
 - Requires complicated processing technique not amenable to medium-tohigh-throughput
 - Not easily amenable to well-plate format
- Protein hyperhydration (CUBIC, Scale, SeeDB)
 - Slow: require days to weeks for clearing
 - Hyperhydration of proteins severely reduces tissue integrity
 - Not compatible with immunolabeling techniques
- Organic solvent-based (BABB, iDISCO, 3DISCO)
 - Use of highly lipophilic organic solvents not compatible with plastic well-plates

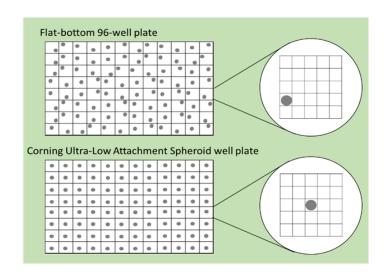
Limitations of Imaging Spheroids

Clearing Allows Detection of Every Cell

Practical Considerations for Assaying Spheroids

- Generation of Spheroids
 - Choice of cell line
 - Plate choice
- Labeling techniques
- Considerations for High Content Imaging
 - Localizing spheroids
 - LED vs. Laser
 - Air objective vs. immersion objective
 - Confocal vs. widefield
 - Z-projections vs. Z-stacks

Labeling Techniques for Cleared Tissues


- Fluorescent probes
 - Work very well, very rapid in most cases
- Immunolabeling
 - Requires permeabilization to allow antibody penetration
 - Can label > 2 mm deep into brain tissue
 - Very powerful: label virtually any target in wild-type or genetically modified models
 - 1000s of antibodies available from vendors qualified for IF/IHC

FISH

- Requires protease pre-processing
- Powerful tool to characterize gene expression
- Expensive, often requires customized probes
- Fluorescent proteins
 - Excellent tool for interrogating gene expression, localization of target protein, etc.
 - Clearing provides excellent way to visualize fluorescent protein distribution

Considerations for Imaging: Localization

- Localization within the well
 - Flat-bottom plates cause spheroids to have random placement
 - Scan of entire well: ~72 hr. per 96-well
 plate
- Corning plates localize tissue to center of wells, drastically improving image throughput
 - Scan of entire plate: ~12 hr. per 96-well plate
 - Nearly 6x increase from U-bottom plates localizing tissue!

Considerations for Imaging: LED vs. Laser

- High content imaging systems utilize either LED or laser to excite fluorescent dyes
- Perkin Elmer Opera/Operetta, GE InCell 6000/6500, and Thermo CX7 LZR utilize laser illumination
- Molecular Devices, Thermo CX5/CX7 utilize LED

- Laser: better resolution, better penetration of light into tissue, no "foreshadowing" – slower, more expensive to maintain
- LED: lower resolution, causes "foreshadowing" faster, less maintenance

Considerations for Imaging: Air Objective vs. Immersion

- For imaging spheroids, air objectives are perfectly compatible
- 10x air objective gives field of view (FOV) requiring ~36 tiles to cover well
 - Higher magnification requires even more scanning
- Immersion objective with high numerical aperature (NA) not required for routine spheroid work
- Myth: immersion objectives allow visualization of center of noncleared spheroids
- Fact: spheroids must be cleared to visualize interior cells

Considerations for Imaging: Confocal vs. Widefield

- Confocal imaging limits out-of-focus light, resulting in sharper images with very narrow (~5-10 μm) depth of field
 - Volume images obtained by taking z-slice at various depth
 - With clearing, allows for interrogation of entire cell population
 - Much slower than widefield
 - Much crisper, sharper images than widefield
 - Smaller pinhole = sharper resolution = less light hitting detector = lower intensity image
- Widefield imaging
 - No depth information
 - With clearing, cross section of cell population can be observed
 - Much faster than confocal
 - Poorer image quality
 - Far more light hits detector, can detect weaker signals

Considerations for Imaging: Z-projections vs. Stacks

- Z-projections are a merge of images in a z-stack
 - Far smaller file size (2MB vs 50MB)
 - Loss of z-spatial information
 - Easier and much faster to analyze
 - Poorer quality than z-stack, better than widefield

Z-stacks

- Full set of coordinates for every detected cell
- One image for each plane throughout spheroid
- Very high image quality
- Far more light hits detector: can detect weaker signals
- Enables spatial response profiling

Data Processing: Open Source Software

- ImageJ: Open source image processing platform built on Java, from NIH
 - Clunky and difficult to learn, but extremely powerful!
 - Used for general processing (e.g. contrast adjustment, cropping, merging channels, etc)
 - Easy to process huge numbers of image files (>10k)
 - Easy to program using macros
- CellProfiler: Open source image processing platform for analyzing sets of images, from Broad Institute
 - Very powerful platform for cell-counting, colocalization, and other quantitative analyses of image sets obtained from high content imaging

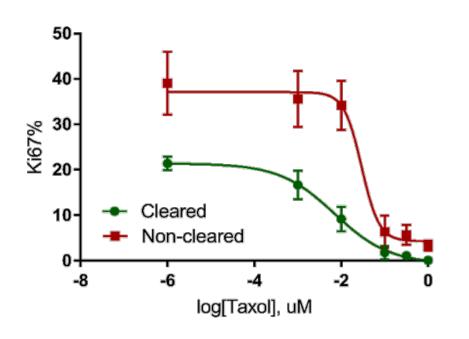
Specific Application: HepG2 Cell Proliferation

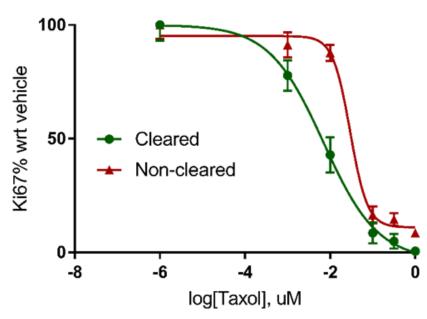
- HepG2 spheroids were seeded at 1000 cells/well in Corning ULA U-bottom 96-well plates
- Grown for 2 days prior to dosing. Dosing day = day 0
- Dosed with paclitaxel at 1 µM, 500 nM, 100 nM, 10 nM, 1 nM, as well as one row for vehicle control at day 0 and 2
- On day 4, spheroids were fixed with 10% neutral buffered formalin for 5 minutes

HepG2 Cell Proliferation: Processing

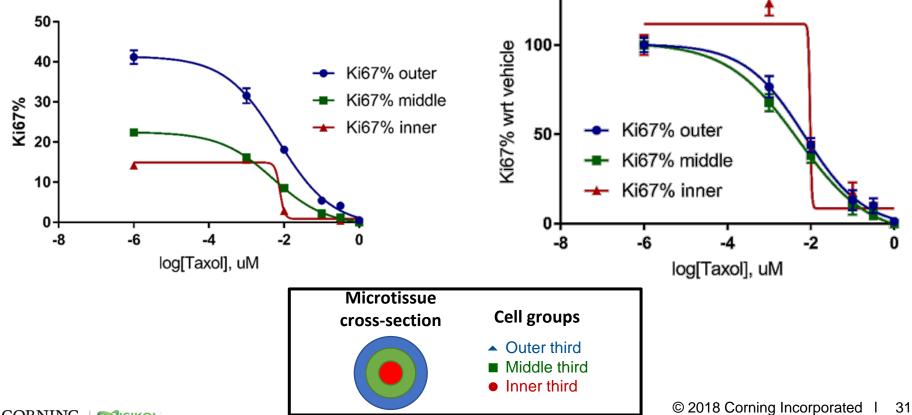
Pre-treatment (20 min.)

- Treatment with methanol/DMSO
- Treatment with PBS/Triton X-100


Labeling (1 hr.)


- Blocking
- Primary antibody (mouse anti-human Ki67)
- Secondary antibody (goat anti-mouse AlexaFluor488)

Clearing (5 min.)


- Dehydration
- Clearing with Visikol

HepG2 Cell Proliferation: Dose Response

HepG2 Cell Proliferation: Spatial Dose Response

Questions?

Poster #1036-B Today 5-6PM Visikol Exhibit #1829

Corning Technical Program Handout

Visit Corning at Exhibit #1029 and Rock the Science of 3D!

CORNING